# (c) 2012-2014, Michael DeHaan # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see . # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.compat.six import iteritems, text_type from ansible.errors import AnsibleError from ansible.executor.play_iterator import PlayIterator from ansible.playbook.block import Block from ansible.playbook.included_file import IncludedFile from ansible.playbook.task import Task from ansible.plugins import action_loader from ansible.plugins.strategy import StrategyBase from ansible.template import Templar try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() class StrategyModule(StrategyBase): def _get_next_task_lockstep(self, hosts, iterator): ''' Returns a list of (host, task) tuples, where the task may be a noop task to keep the iterator in lock step across all hosts. ''' noop_task = Task() noop_task.action = 'meta' noop_task.args['_raw_params'] = 'noop' noop_task.set_loader(iterator._play._loader) host_tasks = {} display.debug("building list of next tasks for hosts") for host in hosts: host_tasks[host.name] = iterator.get_next_task_for_host(host, peek=True) display.debug("done building task lists") num_setups = 0 num_tasks = 0 num_rescue = 0 num_always = 0 lowest_cur_block = len(iterator._blocks) display.debug("counting tasks in each state of execution") for (k, v) in iteritems(host_tasks): if v is None: continue (s, t) = v if t is None: continue if s.cur_block < lowest_cur_block and s.run_state != PlayIterator.ITERATING_COMPLETE: lowest_cur_block = s.cur_block if s.run_state == PlayIterator.ITERATING_SETUP: num_setups += 1 elif s.run_state == PlayIterator.ITERATING_TASKS: num_tasks += 1 elif s.run_state == PlayIterator.ITERATING_RESCUE: num_rescue += 1 elif s.run_state == PlayIterator.ITERATING_ALWAYS: num_always += 1 display.debug("done counting tasks in each state of execution") def _advance_selected_hosts(hosts, cur_block, cur_state): ''' This helper returns the task for all hosts in the requested state, otherwise they get a noop dummy task. This also advances the state of the host, since the given states are determined while using peek=True. ''' # we return the values in the order they were originally # specified in the given hosts array rvals = [] display.debug("starting to advance hosts") for host in hosts: host_state_task = host_tasks[host.name] if host_state_task is None: continue (s, t) = host_state_task if t is None: continue if s.run_state == cur_state and s.cur_block == cur_block: new_t = iterator.get_next_task_for_host(host) rvals.append((host, t)) else: rvals.append((host, noop_task)) display.debug("done advancing hosts to next task") return rvals # if any hosts are in ITERATING_SETUP, return the setup task # while all other hosts get a noop if num_setups: display.debug("advancing hosts in ITERATING_SETUP") return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_SETUP) # if any hosts are in ITERATING_TASKS, return the next normal # task for these hosts, while all other hosts get a noop if num_tasks: display.debug("advancing hosts in ITERATING_TASKS") return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_TASKS) # if any hosts are in ITERATING_RESCUE, return the next rescue # task for these hosts, while all other hosts get a noop if num_rescue: display.debug("advancing hosts in ITERATING_RESCUE") return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_RESCUE) # if any hosts are in ITERATING_ALWAYS, return the next always # task for these hosts, while all other hosts get a noop if num_always: display.debug("advancing hosts in ITERATING_ALWAYS") return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_ALWAYS) # at this point, everything must be ITERATING_COMPLETE, so we # return None for all hosts in the list display.debug("all hosts are done, so returning None's for all hosts") return [(host, None) for host in hosts] def run(self, iterator, play_context): ''' The linear strategy is simple - get the next task and queue it for all hosts, then wait for the queue to drain before moving on to the next task ''' # iteratate over each task, while there is one left to run result = True work_to_do = True while work_to_do and not self._tqm._terminated: try: self._display.debug("getting the remaining hosts for this loop") hosts_left = [host for host in self._inventory.get_hosts(iterator._play.hosts) if host.name not in self._tqm._unreachable_hosts] self._display.debug("done getting the remaining hosts for this loop") # queue up this task for each host in the inventory callback_sent = False work_to_do = False host_results = [] host_tasks = self._get_next_task_lockstep(hosts_left, iterator) # skip control skip_rest = False choose_step = True for (host, task) in host_tasks: if not task: continue run_once = False work_to_do = True # test to see if the task across all hosts points to an action plugin which # sets BYPASS_HOST_LOOP to true, or if it has run_once enabled. If so, we # will only send this task to the first host in the list. try: action = action_loader.get(task.action, class_only=True) if task.run_once or getattr(action, 'BYPASS_HOST_LOOP', False): run_once = True except KeyError: # we don't care here, because the action may simply not have a # corresponding action plugin pass # check to see if this task should be skipped, due to it being a member of a # role which has already run (and whether that role allows duplicate execution) if task._role and task._role.has_run(host): # If there is no metadata, the default behavior is to not allow duplicates, # if there is metadata, check to see if the allow_duplicates flag was set to true if task._role._metadata is None or task._role._metadata and not task._role._metadata.allow_duplicates: self._display.debug("'%s' skipped because role has already run" % task) continue if task.action == 'meta': self._execute_meta(task, play_context, iterator) else: # handle step if needed, skip meta actions as they are used internally if self._step and choose_step: if self._take_step(task): choose_step = False else: skip_rest = True break self._display.debug("getting variables") task_vars = self._variable_manager.get_vars(loader=self._loader, play=iterator._play, host=host, task=task) task_vars = self.add_tqm_variables(task_vars, play=iterator._play) templar = Templar(loader=self._loader, variables=task_vars) self._display.debug("done getting variables") if not callback_sent: display.debug("sending task start callback, copying the task so we can template it temporarily") saved_name = task.name display.debug("done copying, going to template now") try: task.name = text_type(templar.template(task.name, fail_on_undefined=False)) display.debug("done templating") except: # just ignore any errors during task name templating, # we don't care if it just shows the raw name display.debug("templating failed for some reason") pass display.debug("here goes the callback...") self._tqm.send_callback('v2_playbook_on_task_start', task, is_conditional=False) task.name = saved_name callback_sent = True display.debug("sending task start callback") self._blocked_hosts[host.get_name()] = True self._queue_task(host, task, task_vars, play_context) results = self._process_pending_results(iterator) host_results.extend(results) # if we're bypassing the host loop, break out now if run_once: break # go to next host/task group if skip_rest: continue self._display.debug("done queuing things up, now waiting for results queue to drain") results = self._wait_on_pending_results(iterator) host_results.extend(results) if not work_to_do and len(iterator.get_failed_hosts()) > 0: self._display.debug("out of hosts to run on") self._tqm.send_callback('v2_playbook_on_no_hosts_remaining') result = False break try: included_files = IncludedFile.process_include_results(host_results, self._tqm, iterator=iterator, loader=self._loader, variable_manager=self._variable_manager) except AnsibleError as e: return False if len(included_files) > 0: noop_task = Task() noop_task.action = 'meta' noop_task.args['_raw_params'] = 'noop' noop_task.set_loader(iterator._play._loader) all_blocks = dict((host, []) for host in hosts_left) for included_file in included_files: # included hosts get the task list while those excluded get an equal-length # list of noop tasks, to make sure that they continue running in lock-step try: new_blocks = self._load_included_file(included_file, iterator=iterator) for new_block in new_blocks: noop_block = Block(parent_block=task._block) noop_block.block = [noop_task for t in new_block.block] noop_block.always = [noop_task for t in new_block.always] noop_block.rescue = [noop_task for t in new_block.rescue] for host in hosts_left: if host in included_file._hosts: task_vars = self._variable_manager.get_vars(loader=self._loader, play=iterator._play, host=host, task=included_file._task) final_block = new_block.filter_tagged_tasks(play_context, task_vars) all_blocks[host].append(final_block) else: all_blocks[host].append(noop_block) except AnsibleError as e: for host in included_file._hosts: self._tqm._failed_hosts[host.name] = True iterator.mark_host_failed(host) self._display.error(e, wrap_text=False) continue # finally go through all of the hosts and append the # accumulated blocks to their list of tasks for host in hosts_left: iterator.add_tasks(host, all_blocks[host]) self._display.debug("results queue empty") except (IOError, EOFError) as e: self._display.debug("got IOError/EOFError in task loop: %s" % e) # most likely an abort, return failed return False # run the base class run() method, which executes the cleanup function # and runs any outstanding handlers which have been triggered return super(StrategyModule, self).run(iterator, play_context, result)