community.general/lib/ansible/plugins/strategies/linear.py

291 lines
13 KiB
Python

# (c) 2012-2014, Michael DeHaan <michael.dehaan@gmail.com>
#
# This file is part of Ansible
#
# Ansible is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Ansible is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Ansible. If not, see <http://www.gnu.org/licenses/>.
# Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
from ansible.errors import AnsibleError
from ansible.executor.play_iterator import PlayIterator
from ansible.playbook.block import Block
from ansible.playbook.included_file import IncludedFile
from ansible.playbook.task import Task
from ansible.plugins import action_loader
from ansible.plugins.strategies import StrategyBase
from ansible.template import Templar
class StrategyModule(StrategyBase):
def _get_next_task_lockstep(self, hosts, iterator):
'''
Returns a list of (host, task) tuples, where the task may
be a noop task to keep the iterator in lock step across
all hosts.
'''
noop_task = Task()
noop_task.action = 'meta'
noop_task.args['_raw_params'] = 'noop'
noop_task.set_loader(iterator._play._loader)
host_tasks = {}
for host in hosts:
host_tasks[host.name] = iterator.get_next_task_for_host(host, peek=True)
num_setups = 0
num_tasks = 0
num_rescue = 0
num_always = 0
lowest_cur_block = len(iterator._blocks)
for (k, v) in host_tasks.iteritems():
if v is None:
continue
(s, t) = v
if s.cur_block < lowest_cur_block and s.run_state != PlayIterator.ITERATING_COMPLETE:
lowest_cur_block = s.cur_block
if s.run_state == PlayIterator.ITERATING_SETUP:
num_setups += 1
elif s.run_state == PlayIterator.ITERATING_TASKS:
num_tasks += 1
elif s.run_state == PlayIterator.ITERATING_RESCUE:
num_rescue += 1
elif s.run_state == PlayIterator.ITERATING_ALWAYS:
num_always += 1
def _advance_selected_hosts(hosts, cur_block, cur_state):
'''
This helper returns the task for all hosts in the requested
state, otherwise they get a noop dummy task. This also advances
the state of the host, since the given states are determined
while using peek=True.
'''
# we return the values in the order they were originally
# specified in the given hosts array
rvals = []
for host in hosts:
host_state_task = host_tasks[host.name]
if host_state_task is None:
continue
(s, t) = host_state_task
if s.run_state == cur_state and s.cur_block == cur_block:
new_t = iterator.get_next_task_for_host(host)
#if new_t != t:
# raise AnsibleError("iterator error, wtf?")
rvals.append((host, t))
else:
rvals.append((host, noop_task))
return rvals
# if any hosts are in ITERATING_SETUP, return the setup task
# while all other hosts get a noop
if num_setups:
return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_SETUP)
# if any hosts are in ITERATING_TASKS, return the next normal
# task for these hosts, while all other hosts get a noop
if num_tasks:
return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_TASKS)
# if any hosts are in ITERATING_RESCUE, return the next rescue
# task for these hosts, while all other hosts get a noop
if num_rescue:
return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_RESCUE)
# if any hosts are in ITERATING_ALWAYS, return the next always
# task for these hosts, while all other hosts get a noop
if num_always:
return _advance_selected_hosts(hosts, lowest_cur_block, PlayIterator.ITERATING_ALWAYS)
# at this point, everything must be ITERATING_COMPLETE, so we
# return None for all hosts in the list
return [(host, None) for host in hosts]
def run(self, iterator, play_context):
'''
The linear strategy is simple - get the next task and queue
it for all hosts, then wait for the queue to drain before
moving on to the next task
'''
# iteratate over each task, while there is one left to run
result = True
work_to_do = True
while work_to_do and not self._tqm._terminated:
try:
self._display.debug("getting the remaining hosts for this loop")
hosts_left = self._inventory.get_hosts(iterator._play.hosts)
self._display.debug("done getting the remaining hosts for this loop")
# queue up this task for each host in the inventory
callback_sent = False
work_to_do = False
host_results = []
host_tasks = self._get_next_task_lockstep(hosts_left, iterator)
# skip control
skip_rest = False
choose_step = True
for (host, task) in host_tasks:
if not task:
continue
run_once = False
work_to_do = True
# test to see if the task across all hosts points to an action plugin which
# sets BYPASS_HOST_LOOP to true, or if it has run_once enabled. If so, we
# will only send this task to the first host in the list.
try:
action = action_loader.get(task.action, class_only=True)
if task.run_once or getattr(action, 'BYPASS_HOST_LOOP', False):
run_once = True
except KeyError:
# we don't care here, because the action may simply not have a
# corresponding action plugin
pass
# check to see if this task should be skipped, due to it being a member of a
# role which has already run (and whether that role allows duplicate execution)
if task._role and task._role.has_run():
# If there is no metadata, the default behavior is to not allow duplicates,
# if there is metadata, check to see if the allow_duplicates flag was set to true
if task._role._metadata is None or task._role._metadata and not task._role._metadata.allow_duplicates:
self._display.debug("'%s' skipped because role has already run" % task)
continue
if task.action == 'meta':
# meta tasks store their args in the _raw_params field of args,
# since they do not use k=v pairs, so get that
meta_action = task.args.get('_raw_params')
if meta_action == 'noop':
# FIXME: issue a callback for the noop here?
continue
elif meta_action == 'flush_handlers':
self.run_handlers(iterator, play_context)
else:
raise AnsibleError("invalid meta action requested: %s" % meta_action, obj=task._ds)
else:
# handle step if needed, skip meta actions as they are used internally
if self._step and choose_step:
if self._take_step(task):
choose_step = False
else:
skip_rest = True
break
self._display.debug("getting variables")
task_vars = self._variable_manager.get_vars(loader=self._loader, play=iterator._play, host=host, task=task)
task_vars = self.add_tqm_variables(task_vars, play=iterator._play)
templar = Templar(loader=self._loader, variables=task_vars)
self._display.debug("done getting variables")
if not callback_sent:
temp_task = task.copy()
try:
temp_task.name = unicode(templar.template(temp_task.name, fail_on_undefined=False))
except:
# just ignore any errors during task name templating,
# we don't care if it just shows the raw name
pass
self._tqm.send_callback('v2_playbook_on_task_start', temp_task, is_conditional=False)
callback_sent = True
self._blocked_hosts[host.get_name()] = True
self._queue_task(host, task, task_vars, play_context)
results = self._process_pending_results(iterator)
host_results.extend(results)
# if we're bypassing the host loop, break out now
if run_once:
break
# go to next host/task group
if skip_rest:
continue
self._display.debug("done queuing things up, now waiting for results queue to drain")
results = self._wait_on_pending_results(iterator)
host_results.extend(results)
if not work_to_do and len(iterator.get_failed_hosts()) > 0:
self._display.debug("out of hosts to run on")
self._tqm.send_callback('v2_playbook_on_no_hosts_remaining')
result = False
break
try:
included_files = IncludedFile.process_include_results(host_results, self._tqm, iterator=iterator, loader=self._loader, variable_manager=self._variable_manager)
except AnsibleError, e:
return False
if len(included_files) > 0:
noop_task = Task()
noop_task.action = 'meta'
noop_task.args['_raw_params'] = 'noop'
noop_task.set_loader(iterator._play._loader)
all_blocks = dict((host, []) for host in hosts_left)
for included_file in included_files:
# included hosts get the task list while those excluded get an equal-length
# list of noop tasks, to make sure that they continue running in lock-step
try:
new_blocks = self._load_included_file(included_file, iterator=iterator)
except AnsibleError, e:
for host in included_file._hosts:
iterator.mark_host_failed(host)
self._display.warning(str(e))
continue
for new_block in new_blocks:
noop_block = Block(parent_block=task._block)
noop_block.block = [noop_task for t in new_block.block]
noop_block.always = [noop_task for t in new_block.always]
noop_block.rescue = [noop_task for t in new_block.rescue]
for host in hosts_left:
if host in included_file._hosts:
task_vars = self._variable_manager.get_vars(loader=self._loader, play=iterator._play, host=host, task=included_file._task)
final_block = new_block.filter_tagged_tasks(play_context, task_vars)
all_blocks[host].append(final_block)
else:
all_blocks[host].append(noop_block)
for host in hosts_left:
iterator.add_tasks(host, all_blocks[host])
self._display.debug("results queue empty")
except (IOError, EOFError), e:
self._display.debug("got IOError/EOFError in task loop: %s" % e)
# most likely an abort, return failed
return False
# run the base class run() method, which executes the cleanup function
# and runs any outstanding handlers which have been triggered
return super(StrategyModule, self).run(iterator, play_context, result)